用PySpark ML构建流失预测模型的五个步骤

​项目概述

Sparkify是一个数字音乐服务,用户在其中使用免费层或使用高级订阅模式,即每月支付固定费用,播放他们喜欢的歌曲。用户与应用程序的所有互动(事件)都被记录下来,这为收集洞察力、学习行为模式和探索客户漏斗提供数据。每个用户我们都收集历史事件,如歌曲播放、喜欢、不喜欢、登录、退出、升级、降级等。分析这些数据,我们可以帮助企业了解 "让客户满意"的关键驱动因素,并回答诸如如何提高客户满意度,如何让用户更加投入,激励他们升级订阅等问题。

问题陈述

用户可以升级、降级或取消服务。如果我们能够预测用户取消服务的意图,我们就可以尝试针对这些用户提供特别优惠,这将有可能防止用户流失并为企业节省数百万美元。在这个项目中,我们已经建立了一个模型,根据用户在应用程序中的历史事件,识别出具有高流失倾向的用户。

评价指标

"流失预测"

THE END
Copyright © 2024 亿华云